1. A student is investigating the following statement about natural numbers.

"
$$n^3 - n$$
 is a multiple of 4"

(a) Prove, using algebra, that the statement is true for all odd numbers.

(4)

(b) Use a counterexample to show that the statement is not always true.

(1)

$$\eta^3 - \eta = (2k+1)^3 - (2k+1)$$

=
$$8k^3 + 12k^2 + 6k + 1 - (2k+1)$$

$$= 8k^3 + 12k^2 + 4k = 4(2k^3 + 3k^2 + k)$$

As k is an integer,
$$4 \times (2k^3 + 3k^2 + k)$$
 is a multiple of 4. Therefore, if n is odd then $n^3 - n$ is a multiple of $4 \cdot n^3 + n$

b)

2. (i) A student states

"if x^2 is greater than 9 then x must be greater than 3"

Determine whether or not this statement is true, giving a reason for your answer.

(1)

(ii) Prove that for all positive integers n,

$$n^3 + 3n^2 + 2n$$

is divisible by 6

(3)

(i) claim: if
$$\chi^2 > 9$$
, then $\chi > 3$

if
$$x = -4 : (-4)^2 = 16 > 9$$
 and $(-4) < 3$,

then the statement is false

$$\therefore x > 3$$
, $x < -3$ (statement is false)

(ii) $h^3 + 3n^2 + 2n = n(n^2 + 3n + 2)$ (i)
= n(n+1)(n+2), which is the product of
three consecutive integers.
Examples of consecutive integers: 7,8,9)
One of the numbers
16, 17, (8) is divisible by 3
23,(24), 25
1 01 405t abo 00 H 000
will be divisible by 2
will be divisible by 2
As n(n+1)(n+2) is a multiple of 2 and a multiple of 3, it must
be a multiple of 6.
So, n3+3n2+2n is divisible by 6 for all integers n.

3. In this question p and q are positive integers with q > p

Statement 1: $q^3 - p^3$ is never a multiple of 5

(a) Show, by means of a counter example, that Statement 1 is **not** true.

(1)

Statement 2: When p and q are consecutive **even** integers $q^3 - p^3$ is a multiple of 8

(b) Prove, using algebra, that Statement 2 is true.

(4)

a) Let
$$q = 8$$
 and $p = 3$

$$q^3 - \rho^3 = 8^3 - 3^3$$

= 485 (1) which is a multiple of 5. Statement 1 is not true.

$$(2n+2)^3 - (2n)^3 = (2n+2)(2n+2)(2n+2) - 8n^3$$

$$=(4n^2+8n+4)(2n+2)-8n^3$$

4. (i) Use proof by exhaustion to show that for $n \in \mathbb{N}$, $n \leq 4$

$$(n+1)^3 > 3^n$$

(2)

(ii) Given that $m^3 + 5$ is odd, use proof by contradiction to show, using algebra, that m is even.

(4)

i) n∈ M1, n≤4 so n=1,2,3 or 4 (0 € M1)

(4)

N=1, $2^3=8$, $3^1=3$ 8>3

$$\Lambda = 2$$
, $3^3 = 27$, $3^2 = 9$ $27 > 9$

$$\Lambda=3$$
, $4^8=64$, $3^3=27$ $64>27$

$$n=4$$
, $5^3=125$, $3^4=81$ 125>81 1

so if
$$n \in |X|$$
, $n \le 4$, then $(n+1)^3 > 3^6$

ii) Assume there exists an in which is odd such that m 3+5 is odd 1

Set m= 2k+1, k = 2

$$m^{3}+5 = (2k+1)^{3}+5 = 8k^{3}+12k^{2}+6k+1+5$$

= $8k^{3}+12k^{2}+6k+6$
= $2(4k^{3}+6k^{2}+3k+3)$ which is even. 0

This is a contradiction.

So if m3+5 is odd then m must be even.

5. Prove, using algebra, that

$$(n+1)^3 - n^3$$

is odd for all $n \in \mathbb{N}$

(4)

case 1: n is even

let n=2k, KEZ

 $(2k+1)^3 - (2k)^3 = 8k^3 + |2k^2 + 6k + |-8k^3|$

= 12k2+6k+1

= 2(6k2+3k)+1

which boold (1) & because 2n is even by definition, so 2n+1 is odd

ease 2: nisodd

N=2K+1, KEZ

 $(2k+2)^3 - (2k+1)^3 = 8k^8 + 24k^2 + 24k + 8 - (8k^3 + 12k^2 + 6k + 1)$ $= 12k^2 + 18k + 7$ $=2(6k^2+9k+3)+1$

which is odd

Hence odd for all 1 E NI (1)